Gaze-, eye-, and head-movement dynamics during closed- and open-loop gaze pursuit.
نویسندگان
چکیده
Horizontal step-ramp stimuli were used to examine gaze-, eye-, and head-movement dynamics during head-unrestrained pursuit in two rhesus monkeys. In a first series of experiments, we characterized and compared head-restrained (HR) and -unrestrained (HU) pursuit responses to unpredictable, nonperiodic, constant velocity (20-80 degrees/s) stimuli. When the head was free to move, both monkeys used a combination of eye and head motion to initially fixate and then pursue the target. The pursuit responses (i.e., gaze responses) were highly stereotyped and nearly identical among the HR and HU conditions for a given step-ramp stimulus. In the HU condition, initial eye and initial head acceleration tended to increase as a function of target velocity but did not vary systematically with initial target eccentricity. In a second series of experiments, step-ramp stimuli (40 degrees/s) were presented, and, approximately 125 ms after pursuit onset, a constant retinal velocity error (RVE) was imposed for a duration of 300 ms. In each monkey, HR and HU gaze velocity was similarly affected by stabilizing the target with respect to the monkey's fovea (i.e., RVE = 0 degrees/s) and by moving the target with constant retinal velocity errors (i.e., RVE = +/- 10 degrees/s). In the HU condition, changes in both eye and head velocity trajectories contributed to the observed gaze velocity responses to imposed RVEs. We conclude that eye and head movements are not independently controlled during HU pursuit but rather are controlled, at least in part, by a shared upstream controller within the pursuit pathways.
منابع مشابه
Brain stem pursuit pathways: dissociating visual, vestibular, and proprioceptive inputs during combined eye-head gaze tracking.
Eye-head (EH) neurons within the medial vestibular nuclei are thought to be the primary input to the extraocular motoneurons during smooth pursuit: they receive direct projections from the cerebellar flocculus/ventral paraflocculus, and in turn, project to the abducens motor nucleus. Here, we recorded from EH neurons during head-restrained smooth pursuit and head-unrestrained combined eye-head ...
متن کاملEye-Pursuit and Reafferent Head Movement Signals Carried by Pursuit Neurons in the Caudal Part of the Frontal Eye Fields during Head-Free Pursuit
Eye and head movements are coordinated during head-free pursuit. To examine whether pursuit neurons in frontal eye fields (FEF) carry gaze-pursuit commands that drive both eye-pursuit and head-pursuit, monkeys whose heads were free to rotate about a vertical axis were trained to pursue a juice feeder with their head and a target with their eyes. Initially the feeder and target moved synchronous...
متن کاملDo extraocular motoneurons encode head velocity during head-restrained versus head-unrestrained saccadic and smooth pursuit movements?
Microstimulation experiments in the superior colliculus1 and single-unit recordings from its target, the premotor saccadic burst neurons2 (SBNs, located in the paramedian pontine reticular formation), have shown that the saccadic burst generator encodes head as well as eye movements during head-unrestrained gaze shifts. There is also evidence suggesting that premotor circuits likely encode eye ...
متن کاملPurkinje cells of the cerebellar dorsal vermis: simple-spike activity during pursuit and passive whole-body rotation.
To track a slowly moving object during whole body rotation, smooth-pursuit and vestibularly induced eye movements must interact to maintain the accuracy of eye movements in space (i.e., gaze), and gaze movement signals must eventually be converted into eye movement signals in the orbit. To understand the role played by the cerebellar vermis in pursuit-vestibular interactions, in particular whet...
متن کاملHuman head-free gaze saccades to targets flashed before gaze-pursuit are spatially accurate.
Previous studies have shown that accurate saccades can be generated, in the dark, that compensate for movements of the visual axis that result from movements of either the eyes alone or the head alone that intervene between target presentation and saccade onset. We have carried out experiments with human subjects to test whether gaze saccades (gaze = eye-in-space = eye-in-head + head-in-space) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 87 2 شماره
صفحات -
تاریخ انتشار 2002